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  Abstract  

 
 This paper deals with a modified version of Leslie-Gower prey-predator food 

chain model with harvesting where prey grows logistically and predator 

consumes the prey according to Holling type-II functional form. In 

deterministic models of prey-predator interaction, it is natural to include a time 

delay into predator response function.  Here we consider a delay into predator 

response function.  The criteria for existence of equilibrium points along with 

its local stability is discussed. The influence of harvesting on the system is also 

studied in various cases: (i) only prey species is harvested, (ii) only predator 

species is harvested and (iii) when both prey and predator species are 

harvested. Bifurcation analysis is also studied and it is seen that the system 

undergoes a Hopf bifurcation by the introduction of delay. The qualitative 

behaviour of the system is verified through numerical simulation.  
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1. Introduction  
Predator-prey interaction is the fundamental structure in ecosystem. While investigating biological 

phenomena, one of the familiar nonlinear factors which affect dynamical properties of biological and 

mathematical models is functional response. In population dynamics, a functional response of the predator to 

the prey density refers to the change in the density of prey attached per unit time per predator as the prey density 

changes [19]. Holling C. S. [6] suggested three different kinds of functional response for different kinds of 

species to model the phenomena of predation, which made the standard Lotka–Volterra system more realistic.  

Food chain models are one of the topics of major concern in mathematical ecology and many models have 

been proposed for instance [8, 12]. The reproduction of predator after the consumption is not instantaneous in 

general. Some time lag is required for gestation of predators. So, ecologists introduce time delay into the growth 

equation in modelling various systems. Delayed predator-prey models were first proposed by Volterra [16, 17] 

in 1925 to study fish population under harvesting. Since then delayed differential equations have been 

extensively used to model population dynamics, including predator-prey interactions. We refer to the 

monographs [5, 11, 15] for general delayed biological systems. 

The study of population dynamics with harvesting is a subject of mathematical bio-economic and is mainly 

concerned with the optimal management of renewable resources [2]. Harvesting (catching) is commonly 

practiced in fisheries, forestry and wild life management. It has a considerable effect on the dynamical 

evolution of the harvested species, the severity of which depends on the harvesting strategy that can result from 

rapid depletion to complete preservation of the concerned population. Some works on predator-prey system 

with harvesting can be found in [3, 7, 14] etc.  

 The predator–prey food chain model with harvesting is generally described as: 
𝑑𝑥

𝑑𝑡
= 𝑟𝑥(𝑡) − 𝑝(𝑥(𝑡)) 𝑦(𝑡) − 𝐻1(𝑥(𝑡)) 

                                                  
𝑑𝑦

𝑑𝑡
= −𝑑𝑦(𝑡) − 𝑚𝑝(𝑥(𝑡)) 𝑦(𝑡) − 𝐻2(𝑦(𝑡))                                         (1.1) 

                                                           
 This work was supported by UGC, Govt. of India [Grant No. PSW-102/15-16 (ERO), dated 26.09.2017]. 
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  where 𝑟, 𝑑, 𝑚 are positive constants, 𝑝(𝑥) is the functional response of the predator y(t), 𝐻1 and 𝐻2 

are the harvesting term.  

Leslie [9, 10] introduced the following two species Leslie–Gower predator–prey model: 

𝑑𝑥

𝑑𝑡
= (𝑟1 − 𝑏1𝑥)𝑥 − 𝑝(𝑥)𝑦, 

                                                                    
𝑑𝑦

𝑑𝑡
= (𝑟2 −

𝑎2𝑦

𝑥
) 𝑦                                                                      (1.2)                                   

where x(t), y(t) stand for the population (the density) of the prey and the predator at time t, respectively. The 

parameters r1 and r2 are the intrinsic growth rates of the prey and the predator, respectively. b1 measures the 

strength of competition among individuals of species x.  The value 
𝑟1

𝑏1
 is the carrying capacity of the prey in the 

absence of predation. The predator consumes the prey according to the functional response p(x) and grows 

logistically with growth rate r2 and carrying capacity  
𝑟2𝑥

𝑎2
 proportional to the population size of the prey (or 

prey abundance). The parameter a2 is a measure of the food quantity that the prey provides and converted to 

predator birth. The term y/x is the Leslie–Gower term which measures the loss in the predator population due 

to rarity (per capita y/x) of its favourite food. The Leslie–Gower formulation is based on the assumption that 

reduction in a predator population has a reciprocal relationship with per capita availability of its preferred food.  

 As in the case of severe scarcity, the predator can switch over to other populations but its growth will be 

limited by the fact that its most favourite food is not available in abundance. In order to solve such deficiency 

in the above system, Aziz-Alaoui and Daher [1] proposed and studied the following predator–prey model with 

modified Leslie–Gower and Holling-type II schemes: 

𝑑𝑥

𝑑𝑡
= (𝑟1 − 𝑏1𝑥 −

𝑎1𝑦

𝑥+𝑘1
) 𝑥, 

                                                  
𝑑𝑦

𝑑𝑡
= (𝑟2 −

𝑎2𝑦

𝑥+𝑘2
) 𝑦                                                    (1.3) 

where r1, b1, r2, a2 have the same meaning as before. a1 is the maximum value which per capita reduction rate 

of x can attain; k1 and k2 measure the extent to which environment provides protection to prey x and to 

predator y respectively. Many researchers considered system (1.3) and its non-autonomous versions by 

incorporating delay, impulses, harvesting, stochastic perturbation Alee effect and so on [4, 13, 18, 20]. 

 

In this paper we consider the predator-prey model with time delay and harvesting as  

𝑑𝑥

𝑑𝑡
= 𝑟1𝑥 − 𝑏1𝑥2 −

𝑎1𝑥𝑦

𝑥 + 𝑘1

−
ℎ1𝑥

𝑐1 + 𝑥
 

                                                              
𝑑𝑦

𝑑𝑡
= [𝑟2 −

𝑎2𝑦(𝑡−𝜏)

𝑥(𝑡−𝜏)+𝑘2
] 𝑦 −

ℎ2𝑦

𝑐2+𝑦
                                                      (1.4) 

  with initial conditions: x(𝜃), y (𝜃) ≥ 0, 𝜃 ∈ [−𝜏, 0) and x(0) > 0, y(0) > 0 where x and y represent the population 

densities at time 𝑡;  1b , ir , ia , ik , ℎ𝑖 , ic (𝑖 = 1,2) are model parameters assuming only positive values, 𝑟1 is 

the growth rate of prey x, 𝑏1  measures the strength of competition among individuals of species x,  𝑎1 is the 

maximum value which per capita reduction rate of x can attain,  𝑘1 (respectively, 𝑘2 ) measures the extent to 

which environment provides protection to prey x (respectively, to predator y),  𝑟2 describes the growth rates of 

y, and 𝑎2  has a similar meaning to 𝑎1, ℎ1, ℎ2  are maximum harvesting rate and 𝑐1, 𝑐2   are the half saturation 

value of harvesting respectively. 

The system (1.4) has six equilibrium points. They are: (i) trivial equilibrium 𝑃0(0,0), (ii) prey extinction 

equilibrium 𝑃1(0, 𝑦+) and  𝑃2(0, 𝑦−) where 𝑦± =
(𝑟2𝑘2−𝑎2𝑐2)±√(𝑟2𝑘2−𝑎2𝑐2)2−4𝑘2(ℎ2−𝑟2𝑐2)

2𝑎2
  (iii) predator free 

equilibrium 𝑃3(𝑥+, 0) and 𝑃4(𝑥−, 0) where 𝑥± =
(𝑟1−𝑏1𝑐1)±√(𝑟1−𝑏1𝑐1)2−4𝑏1(ℎ1−𝑟1𝑐1)

2𝑏1
 and (iv) interior equilibrium 

𝑃∗(𝑥∗, 𝑦∗) which is the coexistence of predator and prey where 𝑥∗ , 𝑦∗ satisfy the simultaneous equations: 

                                        𝑟1 − 𝑏1𝑥∗ −
𝑎1𝑦∗

𝑥∗+𝑘1
−

ℎ1

𝑐1+𝑥∗ = 0, 

http://www.ijmra.us/
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                                        𝑟2 −
𝑎2𝑦∗

𝑥∗+𝑘2
−

ℎ2

𝑐2+𝑦∗ = 0                                                                                           (1.5) 

  

   Fig.1 An interior equilibrium point exists for the following parametric values 

𝑟1 = 9, 𝑟2 = 7, 𝑏1 = 3, 𝑎1 = 2, 𝑎2 = 4, 𝑘1 = 6, 𝑘2 = 2, ℎ1 = 2, ℎ2 = 7, 𝑐1 = 4, 𝑐2 = 2 

 

2. Existence and Stability 
 

(i) If ℎ2 − 𝑟2𝑐2 < 0, then 𝑦+ > 0 and𝑦 − < 0. So, there exists single prey extinction positive 

equilibrium𝑃1(0, 𝑦+). 

(ii) If ℎ2 − 𝑟2𝑐2 > 0 and 𝛥2 > 0 and𝑟2𝑘2 − 𝑎2𝑐2 > 0, then there exist two positive prey extinction 

equilibria 𝑃1(0, 𝑦+) and 𝑃2(0, 𝑦−) where𝛥2 = (𝑟2𝑘2 − 𝑎2𝑐2)2 − 4𝑘2(ℎ2 − 𝑟2𝑐2). 

(iii) If  ℎ2 − 𝑟2𝑐2 = 0 and  𝑟2𝑘2 − 𝑎2𝑐2 > 0 , then  𝑦− = 0, 𝑦+ > 0. So there exists unique prey 

extinction equilibrium(0,
𝑟2𝑘2−𝑎2𝑐2

𝑎2
). 

(iv) If  ℎ1 − 𝑟1𝑐1 < 0, then 𝑥+ > 0 and   𝑥− < 0. So, there exists a single predator free 

equilibrium𝑃3(𝑥+, 0). 

(v) If  ℎ1 − 𝑟1𝑐1 > 0 and 𝛥1 > 0 and  𝑟1 − 𝑏1𝑐1 > 0, then there exist two positive 
predator free   equilibrium  𝑃3(𝑥+, 0) and 𝑃4(𝑥−, 0) where  𝛥1 = (𝑟1 − 𝑏1𝑐1)2 −
4𝑏1(ℎ1 − 𝑟1𝑐1). 

(vi) If  ℎ1 − 𝑟1𝑐1 = 0 and  𝑟1 − 𝑏1𝑐1 > 0, then  𝑥− = 0,    𝑥+ > 0. So, there exists a unique predator 

free equilibrium (
𝑟1−𝑏1𝑐1

𝑏1
, 0). 

 

 

Since we are interested in the coexistence of predator and prey, we study stability analysis only for the 

interior equilibrium point  𝑃∗(𝑥∗, 𝑦∗). 

 

 Case1.     𝝉 = 𝟎 
Introducing perturbations  𝑥(𝑡) = 𝑋(𝑡) + 𝑥∗, 𝑦(𝑡) = 𝑌(𝑡) + 𝑦∗ in (1.4) and neglecting 2nd and higher order 

products of  𝑋(𝑡) and  𝑌(𝑡), still denoting  𝑋(𝑡)and  𝑌(𝑡)by  𝑥(𝑡) and  𝑦(𝑡) respectively, we get 

                                          
𝑑𝑥

𝑑𝑡
= 𝛼 𝑥(𝑡) + 𝛽 𝑦(𝑡)   

                                          
𝑑𝑦

𝑑𝑡
= 𝛾 𝑥(𝑡) + 𝛿 𝑦(𝑡)                                                                                           (2.1) 

Where 

   𝛼 = −𝑏1𝑥∗ +
𝑎1𝑥∗𝑦∗

(𝑥∗+𝑘1)2 +
ℎ1𝑥∗

(𝑐1+𝑥∗)2 ,   𝛽 = −
𝑎1𝑥∗

𝑥∗+𝑘1
,  𝛾 =

𝑎2𝑦∗2

(𝑥∗+𝑘2)2,   𝛿 =
−𝑎2𝑦∗

𝑥∗+𝑘2
+

ℎ2𝑦∗

(𝑐2+𝑦∗)2.                            (2.2) 

Hence the Jacobian matrix at   𝑃∗(𝑥∗, 𝑦∗) for the linearized system (2.1) is  

                                            𝐽(𝑥∗, 𝑦∗) = (
𝛼 𝛽
𝛾 𝛿

)                                                                              

The characteristic equation of the linearized system (2.1) is given by 

                                             𝜆2 − 𝑝𝜆 + 𝑞 = 0,                                                                                             (2.3) 

where                             𝑝 = 𝑡𝑟𝑎𝑐𝑒 𝐽(𝑥∗, 𝑦∗) = 𝛼 + 𝛿,      

http://www.ijmra.us/


 ISSN: 2320-0294 Impact Factor: 6.765  

23 International Journal of Engineering, Science and Mathematics 

http://www.ijmra.us, Email: editorijmie@gmail.com 

 

                                       𝑞 = 𝑑𝑒𝑡𝐽(𝑥∗, 𝑦∗) = 𝛼𝛿 − 𝛽𝛾.                                                                              (2.4) 

The stability of the interior equilibrium point 𝑃∗(𝑥∗, 𝑦∗)  depends on the sign of the trace and the determinant 

of the Jacobian matrix  𝐽(𝑥∗, 𝑦∗). Here are the different cases: 

       Case(a): If 𝑡𝑟𝑎𝑐𝑒 𝐽 < 0 and 𝑑𝑒𝑡𝐽 > 0, then 𝑃∗(𝑥∗, 𝑦∗)  is a stable node or a stable spiral. 

       Case(b): If 𝑡𝑟𝑎𝑐𝑒 𝐽 > 0 and 𝑑𝑒𝑡𝐽 > 0, then 𝑃∗(𝑥∗, 𝑦∗)   is an unstable node or an unstable spiral. 

       Case(c): If 𝑑𝑒𝑡𝐽 < 0, then 𝑃∗(𝑥∗, 𝑦∗)  is a saddle point.  

Case(d): If 𝑡𝑟𝑎𝑐𝑒 𝐽 = 0, 𝑑𝑒𝑡𝐽 > 0 then there are some limit cycles around 𝑃∗(𝑥∗, 𝑦∗). 

In case(d) the system (1) goes to a Hopf bifurcation. We take c1 or c2 as bifurcation parameter. 

For our model, we see that the expression for 𝑡𝑟𝑎𝑐𝑒 𝐽 and 𝑑𝑒𝑡𝐽 are not explicitly depends on c1 and c2 and it is 

impossible to derive some conditions depending on c1 and c2. So alternatively, we can show the sign of 𝑡𝑟𝑎𝑐𝑒 𝐽 

and 𝑑𝑒𝑡𝐽 by taking some numerical values of the parameters and draw the graphs of 𝑡𝑟𝑎𝑐𝑒𝐽 and 𝑑𝑒𝑡𝐽 in the 

plane of 𝑐1 − 𝑐2. 

 

 

 

 
       Fig.2 Plot of 𝑡𝑟𝑎𝑐𝑒 𝐽 𝑖𝑛 𝑐1 − 𝑐2 plane.                                  Fig.3  Plot of 𝑑𝑒𝑡 𝐽 𝑖𝑛 𝑐1 − 𝑐2 plane. 

 

In figure 2 and 3, we see that the values of 𝑡𝑟𝐽 and 𝑑𝑒𝑡𝐽 can be both positive and negative when c1 and c2 vary. 

Thus, the cases we consider above are tenable. 

  

Case 2. 𝝉 ≠ 𝟎. 
Let us consider the linearized system (1.4) with delay as 

                                          
𝑑𝑥

𝑑𝑡
= 𝛼 𝑥(𝑡) + 𝛽 𝑦(𝑡)   

                                          
𝑑𝑦

𝑑𝑡
= 𝛾 𝑥(𝑡 − 𝜏) + 𝛿 𝑦(𝑡 − 𝜏)                                                                            (2.5) 

where  𝛼, 𝛽, 𝛾, 𝛿 are given by (2.2). The characteristic equation of (2.5) is  

                                       𝜆2 + 𝐴𝜆 + (𝐵 + 𝐶𝜆)𝑒−𝜆𝜏 = 0                                                                              (2.6) 

Where  𝐴 = −𝛼, 𝐵 =  𝛼𝛿 − 𝛽𝛾, 𝐶 = −𝛿.                                                                                                 (2.7) 

Substituting 
)()(  i

in (2.6) and separating real and imaginary parts, we get 

                       
0cossin)(2

0sincos)(22
















eCeCBA

eCeCBA

                                (2.8) 

Here 
 ,,

are functions of . Now we will examine the change of stability of 𝑃∗(𝑥∗, 𝑦∗) which occurs at 

the values of  for which 
0)( 

 and 
0)( 

. Let for 0 
, 

0)( 0 
and

0)( 00  
, 

then (2.8) becomes  

                                    
.0sincos

,0sincos

000000

2

000000









ABC

CB

                                                             (2.9)  

Squaring and adding the above two equations, we get 

                                         
.0)( 22

0

224

0  BCA 
                                                                       (2.10) 

Positive root of the equation (2.10) is given by 

http://www.ijmra.us/
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 2222222

0 )(4)()(
2

1
 

.                                          (2.11) 

Again from (2.9), we get 

                                                 0

2

0
00

)(
tan






ACB

ABC






.                                                                      (2.12) 

Solving for 𝜏0 , we get 

                                          00

2

0

0

0

2

)(
arctan

1












n

ACB

ABC
n 














,                                                  (2.13) 

where  𝑛 =  0, 1, 2, 3, …. 
The smallest  𝜏0 , is obtained by choosing 𝑛 = 0 (denoting  𝜏00 = 𝜏0) , then from (2.13), we get  








 















0

2

0

00

2

0

0

0

)(
arctan

1

)(
arctan

1












ACB

ABC

.                                           (2.14) 

We now show that             

0
)(

0






d

d

.                                                                                             (2.15) 

This will signify that there will be at least one eigen value with positive real part for 0 
. Moreover, the 

condition for Hopf bifurcation is then satisfied yielding the required periodic solution. Now differentiating 

(2.6) with respect to , we get 

                               . 

Thus sign of           0

)(Re





id

d











= sign of 0

1

Re






i
d

d

























 

Now,   

1

Re
















d

d

= 



















0000

2

00

0

)()(

2
Re









iCiBi

C

iAi

Ai

 

                              =
2

0

22

2

22

0

2

0

22

0

)(

2





CB

C

A

A








 

                              =
))((

2
2

0

2222

0

2

0

222

0

24

0

2





CBA

BABC




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Therefore, the transversality condition holds, hence Hopf bifurcation occurs at 00 ,  
.  

Thus, the Hopf bifurcating periodic solution arising at the parametric relation 0 
. 

 

 

3. The influence of harvesting 

Now we discuss the influence of harvesting on the system (1.4), which we describe in three aspects.  

Case1: Only prey species is harvested. Here we consider  ℎ2 = 0. 
Case2: Only predator species is harvested.  Here we consider  ℎ1 = 0. 

 Case3: When both prey and predator species are harvested. 

Here we consider for simplicity that ℎ1 = ℎ2 = ℎ. This is called non-selective harvesting. 

Since the analytical solution for this model cannot be determined explicitly, we are going through                              

numerical simulation. 
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4. Results based on numerical simulation 

Using numeric analysis instead of real world data, which of course would be of great interest, has many 

advantages. It may also be noted that the simulation presented in this paper should be considered from a 

qualitative rather than a quantitative point of view. However, numerous scenarios covering the breadth of the 

biological feasible parameter space were conducted and the results display the gamut of dynamical results 

collected from all the scenarios tested. 

(i) Let us take 𝑟1 = 9, 𝑟2 = 7, 𝑏1 = 3, 𝑎1 = 2, 𝑎2 = 4, 𝑘1 = 6, 𝑘2 = 2, ℎ1 = 2, ℎ2 = 7, 𝑐1 = 4, 𝑐2 =
2 then the system (1.3) has a positive interior equilibrium  𝑃∗(𝑥∗, 𝑦∗) ≈ (2.3564, 6.7524) . 

when   𝜏 = 0, the interior equilibrium point 𝑃∗(𝑥∗, 𝑦∗) ≈ (2.3564, 6.7524) is globally 

asymptotically stable [see fig. 4, 5]. 

(ii) For the harvesting of only prey species, we take h2=0. Then for the parametric values  𝑟1 = 9, 𝑟2 =
7, 𝑏1 = 3, 𝑎1 = 2, 𝑎2 = 4, 𝑘1 = 6, 𝑘2 = 2, 𝑐1 = 4, 𝑐2 = 2, we see that  both the prey and 

predator population decrease when h1 increases [see fig.6].  

    When only predator species is harvested, we take h1 =0.  Then for the parametric values   𝑟1 =
9, 𝑟2 = 7, 𝑏1 = 3, 𝑎1 = 2, 𝑎2 = 4, 𝑘1 = 6, 𝑘2 = 2, 𝑐1 = 4, 𝑐2 = 2, we see that increasing the 

value of h2, prey population increase and predator population decrease [see fig.7].  

    Lastly when we consider the case h1 = h2 = h, see that for the parametric values  𝑟1 = 9, 𝑟2 =
7, 𝑏1 = 3, 𝑎1 = 2, 𝑎2 = 4, 𝑘1 = 6, 𝑘2 = 2, 𝑐1 = 4, 𝑐2 = 4, both the  prey and predator 

population decrease for the increase of h [see fig.8]. 

(iii) When 𝜏 ≠ 0, we get 𝜔0 =  6.044748581 and 𝜏0 =  0.2598. The positive interior equilibrium 

point 𝑃∗(𝑥∗, 𝑦∗) ≈ (2.3564, 6.7524) is asymptotically stable when 0 ≤ 𝜏 < 𝜏0 [see fig. 9] more 

over the system becomes unstable when 𝜏 > 𝜏0  and these bifurcating periodic solutions from  

𝑃∗(𝑥∗, 𝑦∗) ≈ (2.3564, 6.7524) at  𝜏0 are stable [see fig.10, 11].  

 
Fig.4  Phase plane trajectory shows that the system is globally          Fig.5   The system is globally asymptotically stable 

           asymptotically stable for the parametric  values                                    for the parametric  values 𝑟1 = 9, 𝑟2 = 7,    
           𝑟1 = 9, 𝑟2 = 7, 𝑏1 = 3, 𝑎1 = 2, 𝑎2 = 4, 𝑘1 = 6, 𝑘2 = 2,                       𝑏1 = 3, 𝑎1 = 2, 𝑎2 = 4, 𝑘1 = 6, 𝑘2 = 2, 
            ℎ1 = 2, ℎ2 = 7, 𝑐1 = 4, 𝑐2 = 2                                                             ℎ1 = 2, ℎ2 = 7, 𝑐1 = 4, 𝑐2 = 2  

                    

 

                                                                                                                                       

 
Fig6. This figure shows that when h2=0, then for the                        Fig.7 This figure shows that when h1=0, then for the                         

ascending values of h1 and for the parametric values                            ascending values of h2 and for the parametric values        

 𝑟1 = 9, 𝑟2 = 7, 𝑏1 = 3, 𝑎1 = 2, 𝑎2 = 4, 𝑘1 = 6, 𝑘2 = 2,                        𝑟1 = 9, 𝑟2 = 7, 𝑏1 = 3, 𝑎1 = 2, 𝑎2 = 4, 𝑘1 = 6,  
𝑐1 = 4, 𝑐2 = 2  both prey  and predator population decrease.                𝑘2 = 2, 𝑐1 = 4, 𝑐2 = 2 Prey population increase  
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                                                                                                                 and predator population decrease. 

 
Fig.8 This figure shows that when ℎ1 = ℎ2 = ℎ,                 Fig.9  This figure shows that for the parametric values       

then for the ascending values of h and for  the                              𝑟1 = 9, 𝑟2 = 7, 𝑏1 = 3, 𝑎1 = 2, 𝑎2 = 4, 𝑘1 = 6, 𝑘2 = 2,              
parametric values   𝑟1 = 9, 𝑟2 = 7,  𝑏1 = 3, 𝑎1 = 2 ,                     ℎ1 = 2, ℎ2 = 7, 𝑐1 = 4, 𝑐2 = 2  and 

𝑎2 = 4, 𝑘1 = 6, 𝑘2 = 2, 𝑐1 = 4, 𝑐2 = 4, both prey                           𝜏 = 0.21 < 𝜏0 =  0.2598   the system is stable. 
 and predator population decrease. 
 
 

 
Fig.10  This figure shows that for the parametric values              Fig.11  This figure shows that for the parametric               
             𝑟1 = 9, 𝑟2 = 7, 𝑏1 = 3, 𝑎1 = 2, 𝑎2 = 4, 𝑘1 = 6,                               values  𝑟1 = 9, 𝑟2 = 7, 𝑏1 = 3, 𝑎1 = 2,                               
             𝑘2 = 2, ℎ1 = 2, ℎ2 = 7, 𝑐1 = 4, 𝑐2 = 2 and                                     𝑎2 = 4, 𝑘1 = 6, 𝑘2 = 2, ℎ1 = 2, ℎ2 = 7, 𝑐1 = 4,                       
            𝜏 = 0.27 > 𝜏0 =  0.2598 , the system is unstable.                      𝑐2 = 2  and for  𝜏 = 0.27 > 𝜏0 =  0.2598.  

                                                                                                                  The solution of the system (1.4) shows a limit     

                                                                                                    cyclic behavior.          

   

5. Conclusion 
In this work we consider a delayed predator prey model which is a modified version of the Leslie-Gower 

scheme and on the Holling-type II scheme. Since harvesting has a strong impact on the dynamics of a system, 

we have considered the catch-rate function for both prey and predator based on Holling type-II functional form. 

Here we are not deriving the optimal harvesting policy [14]; instead we are giving some effects of harvesting 

on the system. The above observations show that the harvesting of either species plays an important role to 

shape the dynamical behaviour of the system. 

In most of the ecosystems, population of one species does not respond instantaneously to the interactions with 

other species. To incorporate this idea in modelling approach, the time delay models have been developed. We 

introduce time delay into the growth equation of predator and taking delay as bifurcation parameter. We see 

that a Hopf bifurcation occurs whenever delay increases a critical value. 
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